12,972 research outputs found

    Singular perturbation analysis of AOTV-related trajectory optimization problems

    Get PDF
    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model

    Neutron and muon-induced background studies for the AMoRE double-beta decay experiment

    Full text link
    AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search a neutrinoless double-beta decay of 100^{100}Mo in molybdate crystals. The neutron and muon-induced backgrounds are crucial to obtain the zero-background level (<10−510^{-5} counts/(keV⋅\cdotkg⋅\cdotyr)) for the AMoRE-II experiment, which is the second phase of the AMoRE project, planned to run at YEMI underground laboratory. To evaluate the effects of neutron and muon-induced backgrounds, we performed Geant4 Monte Carlo simulations and studied a shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds were also included in the study. In this paper, we estimated the background level in the presence of possible shielding structures, which meet the background requirement for the AMoRE-II experiment

    Characterization of vortex regeneration mechanism in the self-sustaining process of wall-bounded flows using resolvent analysis

    Get PDF
    The regeneration mechanism of streamwise vortical structures in the self-sustaining process of wall-bounded turbulence is investigated. Resolvent analysis [1] is used to identify the principal forcing mode which produces the maximum amplification of the response modes in the minimal channel for the buffer [2] and logarithmic layer [3]. The identified mode is then projected out from the nonlinear term of the Navier-Stokes equations at each time step from the direct numerical simulations (DNS) of the corresponding minimal channel. The results show that the removal of the principal forcing mode is able to significantly inhibit turbulence for the buffer and logarithmic layer while removing the subsequent modes instead of the principal one only marginally affects the flow. Analysis of the dyadic interactions in the nonlinear term shows that the contributions toward the principal forcing mode come from a limited number of wavenumber interactions. Using conditional averaging, the flow structures that are responsible for generating the principal forcing mode, and thus the nonlinear interaction to self-sustain turbulence, are identified to be spanwise rolls interacting with meandering streaks

    Characterization of vortex regeneration mechanism in the self-sustaining process of wall-bounded flows using resolvent analysis

    Get PDF
    The regeneration mechanism of streamwise vortical structures in the self-sustaining process of wall-bounded turbulence is investigated. Resolvent analysis [1] is used to identify the principal forcing mode which produces the maximum amplification of the response modes in the minimal channel for the buffer [2] and logarithmic layer [3]. The identified mode is then projected out from the nonlinear term of the Navier-Stokes equations at each time step from the direct numerical simulations (DNS) of the corresponding minimal channel. The results show that the removal of the principal forcing mode is able to significantly inhibit turbulence for the buffer and logarithmic layer while removing the subsequent modes instead of the principal one only marginally affects the flow. Analysis of the dyadic interactions in the nonlinear term shows that the contributions toward the principal forcing mode come from a limited number of wavenumber interactions. Using conditional averaging, the flow structures that are responsible for generating the principal forcing mode, and thus the nonlinear interaction to self-sustain turbulence, are identified to be spanwise rolls interacting with meandering streaks
    • …
    corecore